
Chapter 11

Working with Strings
In This Chapter

▶ Considering the string difference

▶ Using special characters in strings

▶ Working with single characters

▶ Performing string-specific tasks

▶ Finding what you need in a string

▶ Modifying the appearance of string output

Y
our computer doesn’t understand strings. It’s a basic fact. Computers
understand numbers, not letters. When you see a string on the com-

puter screen, the computer actually sees a series of numbers. However,
humans understand strings quite well, so applications need to be able to
work with them. Fortunately, Python makes working with strings relatively
easy. It translates the string you understand into the numbers the computer
understands, and vice versa.

In order to make strings useful, you need to be able to manipulate them. Of
course, that means taking strings apart and using just the pieces you need
or searching the string for specific information. This chapter describes how
you can build strings using Python, dissect them as needed, and use just
the parts you want after you find what’s required. String manipulation is an
important part of applications because humans depend on computers per-
forming that sort of work for them (even though the computer has no idea of
what a string is).

After you have the string you want, you need to present it to the user in an eye-
pleasing manner. The computer doesn’t really care how it presents the string, so
often you get the information, but it lacks pizzazz. In fact, it may be downright
difficult to read. Knowing how to format strings so that they look nice onscreen
is important because users need to see information in a form they understand.
By the time you complete this chapter, you know how to create, manipulate,
and format strings so that the user sees precisely the right information.

206 Part III: Performing Common Tasks

Understanding That Strings
Are Different

Most aspiring developers (and even a few who have written code for a
long time) really have a hard time understanding that computers truly do
only understand 0s and 1s. Even larger numbers are made up of 0s and 1s.
Comparisons take place with 0s and 1s. Data is moved using 0s and 1s. In
short, strings don’t exist for the computer (and numbers just barely exist).
Although grouping 0s and 1s to make numbers is relatively easy, strings are
a lot harder because now you’re talking about information that the computer
must manipulate as numbers but present as characters.

 There are no strings in computer science. Strings are made up of characters,
and individual characters are actually numeric values. When you work with
strings in Python, what you’re really doing is creating an assembly of charac-
ters that the computer sees as numeric values. That’s why the following sec-
tions are so important. They help you understand why strings are so special.
Understanding this material will save you a lot of headaches later.

Defining a character using numbers
To create a character, you must first define a relationship between that
character and a number. More important, everyone must agree that when
a certain number appears in an application and is viewed as a character by
that application, the number is translated into a specific character. One of
the most common ways to perform this task is to use the American Standard
Code for Information Interchange (ASCII). Python uses ASCII to translate the
number 65 to the letter A. The chart at http://www.asciitable.com/
shows the various numeric values and their character equivalents.

 Every character you use must have a different numeric value assigned to
it. The letter A uses a value of 65. To create a lowercase a, you must assign
a different number, which is 97. The computer views A and a as completely
 different characters, even though people view them as uppercase and lower-
case versions of the same character.

The numeric values used in this chapter are in decimal. However, the com-
puter still views them as 0s and 1s. For example, the letter A is really the
value 01000001 and the letter a is really the value 01100001. When you see an
A onscreen, the computer sees a binary value instead.

207 Chapter 11: Working with Strings

 Having just one character set to deal with would be nice. However, not every-
one could agree on a single set of numeric values to equate with specific
characters. Part of the problem is that ASCII doesn’t support characters used
by other languages; also, it lacks the capability to translate special characters
into an onscreen presentation. In fact, character sets abound. You can see a
number of them at http://www.i18nguy.com/unicode/codepages.
html. Click one of the character set entries to see how it assigns specific
numeric values to each character. Most characters sets do use ASCII as a
starting point.

Using characters to create strings
Python doesn’t make you jump through hoops to create strings. However,
the term string should actually give you a good idea of what happens. Think
about beads or anything else you might string. You place one bead at a time
onto the string. Eventually you end up with some type of ornamentation —
perhaps a necklace or tree garland. The point is that these items are made up
of individual beads.

The same concept used for necklaces made of beads holds true for strings
in computers. When you see a sentence, you understand that the sentence
is made up of individual characters that are strung together by the program-
ming language you use. The language creates a structure that holds the indi-
vidual characters together. So, the language, not the computer, knows that
so many numbers in a row (each number being represented as a character)
defines a string such as a sentence.

 You may wonder why it’s important to even know how Python works with
characters. The reason is that many of the functions and special features that
Python provides work with individual characters, and it’s important to know
that Python sees the individual characters. Even though you see a sentence,
Python sees a specific number of characters.

Unlike most programming languages, strings can use either single quotes
or double quotes. For example, “Hello There!” with double quotes is a
string, as is ‘Hello There!’ with single quotes. Python also supports triple
double and single quotes that let you create strings spanning multiple lines.
The following steps help you create an example that demonstrates some
of the string features that Python provides. This example also appears
with the downloadable source code as BasicString.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

208 Part III: Performing Common Tasks

 2. Type the following code into the window — pressing Enter after each
line:

print('Hello There (Single Quote)!')
print("Hello There (Double Quote)!")
print("""This is a multiple line
string using triple double quotes.
You can also use triple single quotes.""")

 Each of the three print() function calls demonstrates a different prin-
ciple in working with strings. It’s equally acceptable to enclose the string
in either single or double quotes. When you use a triple quote (either
single or double), the text can appear on multiple lines.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs the text.
Notice that the multiline text appears on three lines (see Figure 11-1),
just as it does in the source code file, so this is a kind of formatting. You
can use multiline formatting to ensure that the text breaks where you
want it to onscreen.

Figure 11-1:

Strings

consist of

individual

characters

that are

linked

together.

Creating Stings with Special Characters
Some strings include special characters. These characters are different from
the alphanumeric and punctuation characters that you’re used to using. In
fact, they fall into these categories:

 ✓ Control: An application requires some means of determining that a par-
ticular character isn’t meant to be displayed but rather to control the
display. All the control movements are based on the insertion pointer, the

209 Chapter 11: Working with Strings

line you see when you type text on the screen. For example, you don’t
see a tab character. The tab character provides a space between two
elements, and the size of that space is controlled by a tab stop. Likewise,
when you want to go to the next line, you use a carriage return (which
returns the insertion pointer to the beginning of the line) and linefeed
(which places the insertion pointer on the next line) combination.

 ✓ Accented: Characters that have accents, such as the acute (‘), grave (`),
circumflex (^), umlaut or diaeresis (¨), tilde (~), or ring ()̊, represent
special spoken sounds, in most cases. You must use special characters
to create alphabetical characters with these accents included.

 ✓ Drawing: It’s possible to create rudimentary art with some characters. You
can see examples of the box-drawing characters at http://jrgraphix.
net/r/Unicode/2500-257F. Some people actually create art using ASCII
characters as well (http://www.asciiworld.com/).

 ✓ Typographical: A number of typographical characters, such as the
pilcrow (¶),are used when displaying certain kinds of text onscreen,
especially when the application acts as an editor.

 ✓ Other: Depending on the character set you use, the selection of characters
is nearly endless. You can find a character for just about any need. The
point is that you need some means of telling Python how to present these
special characters.

A common need when working with strings, even strings from simple console
applications, is control characters. With this in mind, Python provides escape
sequences that you use to define control characters directly (and a special
escape sequence for other characters).

 An escape sequence literally escapes the common meaning of a letter, such as
a, and gives it a new meaning (such as the ASCII bell or beep). The combina-
tion of the backslash (\) and a letter (such as a) is commonly viewed as a
single letter by developers — an escape character or escape code. Table 11-1
provides an overview of these escape sequences.

Table 11-1 Python Escape Sequences

Escape
Sequence

Meaning

\newline Ignored

\\ Backslash (\)

\’ Single quote (‘)

\" Double quote (")

(continued)

210 Part III: Performing Common Tasks

Escape
Sequence

Meaning

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\uhhhh Unicode character (a specific kind of character set with
broad appeal across the world) with a hexadecimal value that
replaces hhhh

\v ASCII Vertical Tab (VT)

\ooo ASCII character with octal numeric value that replaces ooo

\xhh ASCII character with hexadecimal value that replaces hh

The best way to see how the escape sequences work is to try them. The
following steps help you create an example that tests various escape
sequences so that you can see them in action. This example also appears
with the downloadable source code as SpecialCharacters.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

print("Part of this text\r\nis on the next line.")
print("This is an A with a grave accent: \xC0.")
print("This is a drawing character: \u2562.")
print("This is a pilcrow: \266.")
print("This is a division sign: \xF7.")

 The example code uses various techniques to achieve the same end — to
create a special character. Of course, you use control characters directly,
as shown in the first line. Many special letters are accessible using a
hexadecimal number that has two digits (as in the second and fifth lines).
However, some require that you rely on Unicode numbers (which always
require four digits), as shown in the third line. Octal values use three
digits and have no special character associated with them, as shown in
the fourth line.

Table 11-1 (continued)

211 Chapter 11: Working with Strings

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs the
expected text and special characters, as shown in Figure 11-2.

 The Python shell uses a standard character set across platforms, so
the Python Shell should use the same special characters no matter
which platform you test. However, when creating your application,
make sure to test it on various platforms to see how the application will
react. A character set on one platform may use different numbers for
special characters than another platform does. In addition, user selec-
tion of character sets could have an impact on how special characters
displayed by your application appear. Always make sure that you test
special character usage completely.

Figure 11-2:

Use special

characters

as needed

to present

special

information

or to format

the output.

Selecting Individual Characters
Earlier in the chapter, you discover that strings are made up of individual
characters. They are, in fact, just like beads on a necklace — with each bead
being an individual element of the whole string.

Python makes it possible to access individual characters in a string. This
is an important feature because you can use it to create new strings that
contain only part of the original. In addition, you can combine strings to
create new results. The secret to this feature is the square bracket. You place
a square bracket with a number in it after the name of the variable. Here’s
an example:

MyString = "Hello World"
print(MyString[0])

212 Part III: Performing Common Tasks

 In this case, the output of the code is the letter H. Python strings are zero-
based, which means they start with the number 0 and proceed from there.
For example, if you were to type print(MyString[1]), the output would be
the letter e.

You can also obtain a range of characters from a string. Simply provide the
beginning and ending letter count separated by a colon in the square brackets.
For example, print(MyString[6:11]) would output the word World. The
output would begin with letter 7 and end with letter 12 (remember that the
index is zero based).

The following steps demonstrate some basic tasks that you can perform
using Python’s character-selection technique. This example also appears
with the downloadable source code as Characters.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line.

String1 = "Hello World"
String2 = "Python is Fun!"

print(String1[0])
print(String1[0:5])
print(String1[:5])
print(String1[6:])

String3 = String1[:6] + String2[:6]
print(String3)

print(String2[:7]*5)

 The example begins by creating two strings. It then demonstrates vari-
ous methods for using the index on the first string. Notice that you can
leave out the beginning or ending number in a range if you want to work
with the remainder of that string.

 The next step is to combine two substrings. In this case, the code com-
bines the beginning of String1 with the beginning of String2 to create
String3.

 The use of the + sign to combine two strings is called concatenation. It’s
one of the handier operators to remember when you’re working with
strings in an application.

 The final step is to use a Python feature called repetition. You use repetition
to make a number of copies of a string or substring.

213 Chapter 11: Working with Strings

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The applications outputs a series
of substrings and string combinations, as shown in Figure 11-3.

Figure 11-3:

You can

select

individual

pieces of a

string.

Slicing and Dicing Strings
Working with ranges of characters provides some degree of flexibility, but
it doesn’t provide you with the capability to actually manipulate the string
content or discover anything about it. For example, you might want to
change the characters to uppercase or determine whether the string contains
all letters. Fortunately, Python has functions that help you perform tasks of
this sort. Here are the most commonly used functions:

 ✓ capitalize(): Capitalizes the first letter of a string.

 ✓ center(width, fillchar=" "): Centers a string so that it fits within
the number of spaces specified by width. If you supply a character for
fillchar, the function uses that character. Otherwise, center() uses
spaces to create a string of the desired width.

 ✓ expandtabs(tabsize=8): Expands tabs in a string by replacing the
tab with the number of spaces specified by tabsize. The function
defaults to 8 spaces per tab when tabsize isn’t provided.

 ✓ isalnum(): Returns True when the string has at least one character
and all characters are alphanumeric (letters or numbers).

 ✓ isalpha(): Returns True when the string has at least one character
and all characters are alphabetic (letters only).

 ✓ isdecimal(): Returns True when a Unicode string contains only
decimal characters.

214 Part III: Performing Common Tasks

 ✓ isdigit(): Returns True when a string contains only digits (numbers
and not letters).

 ✓ islower(): Returns True when a string has at least one alphabetic
character and all alphabetic characters are in lowercase.

 ✓ isnumeric(): Returns True when a Unicode string contains only
numeric characters.

 ✓ isspace(): Returns True when a string contains only whitespace char-
acters (which includes spaces, tabs, carriage returns, linefeeds, form
feeds, and vertical tabs, but not the backspace).

 ✓ istitle(): Returns True when a string is cased for use as a title, such
as Hello World. However, the function requires that even little words
have the title case. For example, Follow a Star returns False, even
though it’s properly cased, but Follow A Star returns True.

 ✓ isupper(): Returns True when a string has at least one alphabetic
character and all alphabetic characters are in uppercase.

 ✓ join(seq): Creates a string in which the base string is separated in
turn by each character in seq in a repetitive fashion. For example, if
you start with MyString = "Hello" and type print(MyString.
join("!*!")), the output is !Hello*Hello!.

 ✓ len(string): Obtains the length of string.

 ✓ ljust(width, fillchar=" "): Left justifies a string so that it fits
within the number of spaces specified by width. If you supply a charac-
ter for fillchar, the function uses that character. Otherwise, ljust()
uses spaces to create a string of the desired width.

 ✓ lower(): Converts all uppercase letters in a string to lowercase letters.

 ✓ lstrip(): Removes all leading whitespace characters in a string.

 ✓ max(str): Returns the character that has the maximum numeric value
in str. For example, a would have a larger numeric value than A.

 ✓ min(str): Returns the character that has the minimum numeric value
in str. For example, A would have a smaller numeric value than a.

 ✓ rjust(width, fillchar=" "): Right justifies a string so that it fits
within the number of spaces specified by width. If you supply a charac-
ter for fillchar, the function uses that character. Otherwise, rjust()
uses spaces to create a string of the desired width.

 ✓ rstrip(): Removes all trailing whitespace characters in a string.

 ✓ split(str=" ", num=string.count(str)): Splits a string into sub-
strings using the delimiter specified by str (when supplied). The default is
to use a space as a delimiter. Consequently, if your string contains A Fine
Day, the output would be three substrings consisting of A, Fine, and Day.
You use num to define the number of substrings to return. The default is to
return every substring that the function can produce.

215 Chapter 11: Working with Strings

 ✓ splitlines(num=string.count('\n')): Splits a string that
contains newline (\n) characters into individual strings. Each break
occurs at the newline character. The output has the newline characters
removed. You can use num to specify the number of strings to return.

 ✓ strip(): Removes all leading and trailing whitespace characters
in a string.

 ✓ swapcase(): Inverts the case for each alphabetic character in a string.

 ✓ title(): Returns a string in which the initial letter in each word is in
uppercase and all remaining letters in the word are in lowercase.

 ✓ upper(): Converts all lowercase letters in a string to uppercase letters.

 ✓ zfill (width): Returns a string that is left-padded with zeros so that
the resulting string is the size of width. This function is designed for
use with strings containing numeric values. It retains the original sign
information (if any) supplied with the number.

Playing with these functions a bit can help you understand them better.
The following steps create an example that demonstrates some of the tasks
you can perform using these functions. This example also appears with the
downloadable source code as Functions.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

MyString = " Hello World "

print(MyString.upper())

print(MyString.strip())
print(MyString.center(21, "*"))
print(MyString.strip().center(21, "*"))

print(MyString.isdigit())
print(MyString.istitle())

print(max(MyString))

print(MyString.split())
print(MyString.split()[0])

 The code begins by creating MyString, which includes spaces before
and after the text so that you can see how space-related functions work.
The initial task is to convert all the characters to uppercase.

216 Part III: Performing Common Tasks

 Removing extra space is a common task in application development.
The strip() function performs this task well. The center() function
lets you add padding to both the left and right side of a string so that it
consumes a desired amount of space. When you combine the strip()
and center() functions, the output is different from when you use the
center() function alone.

 You can combine functions to produce a desired result. Python executes
each of the functions one at a time from left to right. The order in which
the functions appear will affect the output, and developers commonly
make the mistake of putting the functions in the wrong order. If your
output is different from what you expected, try changing the function
order.

 Some functions work on the string as an input rather than on the string
instance. The max() function falls into this category. If you had typed
MyString.max(), Python would have displayed an error. The bulleted
list that appears earlier in this section shows which functions require
this sort of string input.

 When working with functions that produce a list as an output, you can
access an individual member by providing an index to it. The example
shows how to use split() to split the string into substrings. It then
shows how to access just the first substring in the list. You find out more
about working with lists in Chapter 12.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs a number
of modified strings, as shown in Figure 11-4.

Figure 11-4:

Using

functions

makes string

manipu-

lation a

lot more

flexible.

217 Chapter 11: Working with Strings

Locating a Value in a String
There are times when you need to locate specific information in a string. For
example, you may want to know whether a string contains the word Hello in
it. One of the essential purposes behind creating and maintaining data is to
be able to search it later to locate specific bits of information. Strings are no
different — they’re most useful when you can find what you need quickly and
without any problems. Python provides a number of functions for searching
strings. Here are the most commonly used functions:

 ✓ count(str, beg= 0, end=len(string)): Counts how many times
str occurs in a string. You can limit the search by specifying a beginning
index using beg or an ending index using end.

 ✓ endswith(suffix, beg=0, end=len(string)): Returns True
when a string ends with the characters specified by suffix. You can
limit the check by specifying a beginning index using beg or an ending
index using end.

 ✓ find(str, beg=0, end=len(string)): Determines whether str
occurs in a string and outputs the index of the location. You can limit
the search by specifying a beginning index using beg or a ending index
using end.

 ✓ index(str, beg=0, end=len(string)): Provides the same function-
ality as find(), but raises an exception when str isn’t found.

 ✓ replace(old, new [, max]): Replaces all occurrences of the char-
acter sequence specified by old in a string with the character sequence
specified by new. You can limit the number of replacements by specifying
a value for max.

 ✓ rfind(str, beg=0, end=len(string)): Provides the same function-
ality as find(), but searches backward from the end of the string instead
of the beginning.

 ✓ rindex(str, beg=0, end=len(string)): Provides the same function-
ality as index(), but searches backward from the end of the string instead
of the beginning.

 ✓ startswith(prefix, beg=0, end=len(string)): Returns True
when a string begins with the characters specified by prefix. You can
limit the check by specifying a beginning index using beg or an ending
index using end.

Finding the data that you need is an essential programming task — one that
is required no matter what kind of application you create. The following steps
help you create an example that demonstrates the use of search functionality
within strings. This example also appears with the downloadable source code
as SearchString.py.

218 Part III: Performing Common Tasks

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

SearchMe = "The apple is red and the berry is blue!"

print(SearchMe.find("is"))
print(SearchMe.rfind("is"))

print(SearchMe.count("is"))

print(SearchMe.startswith("The"))
print(SearchMe.endswith("The"))

print(SearchMe.replace("apple", "car")
 .replace("berry", "truck"))

 The example begins by creating SearchMe, a string with two instances of
the word is. The two instances are important because they demonstrate
how searches differ depending on where you start. When using find(),
the example starts from the beginning of the string. By contrast,
rfind() starts from the end of the string.

 Of course, you won’t always know how many times a certain set of
characters appears in a string. The count() function lets you determine
this value.

 Depending on the kind of data you work with, sometimes the data is
heavily formatted and you can use a particular pattern to your advan-
tage. For example, you can determine whether a particular string (or
substring) ends or begins with a specific sequence of characters. You
could just as easily use this technique to look for a part number.

 The final bit of code replaces apple with car and berry with truck. Notice
the technique used to place the code on two lines. In some cases, your
code will need to appear on multiple lines to make it more readable.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the
output shown in Figure 11-5. Notice especially that the searches
returned different indexes based on where they started in the string.
Using the correct function when performing searches is essential to
ensure that you get the results you expected.

219 Chapter 11: Working with Strings

Figure 11-5:

Typing

the wrong

input type

generates

an error

instead

of an

exception.

Formatting Strings
You can format strings in a number of ways using Python. The main emphasis
of formatting is to present the string in a form that is both pleasing to the
user and easy to understand. Formatting doesn’t mean adding special fonts
or effects in this case, but refers merely to the presentation of the data. For
example, the user might want a fixed-point number rather than a decimal
number as output.

You have quite a few ways to format strings and you see a number of them as
the book progresses. However, the focus of most formatting is the format()
function. You create a formatting specification as part of the string and then
use the format() function to add data to that string. A format specification
may be as simple as two curly brackets {} that specify a placeholder for
data. You can number the placeholder to create special effects. For example,
{0} would contain the first data element in a string. When the data elements
are numbered, you can even repeat them so that the same data appears more
than once in the string.

The formatting specification follows a colon. When you want to create just
a formatting specification, the curly brackets contain just the colon and
whatever formatting you want to use. For example, {:f} would create
a fixed-point number as output. If you want to number the entries, the
number that precedes the colon: {0:f} creates a fixed-point number output
for data element one. The formatting specification follows this form, with the
italicized elements serving as placeholders here:

[[fill]align][sign][#][0][width][,][.precision][type]

220 Part III: Performing Common Tasks

The specification at https://docs.python.org/3/library/string.
html provides you with the in-depth details, but here’s an overview of what
the various entries mean:

 ✓ fill: Defines the fill character used when displaying data that is too small
to fit within the assigned space.

 ✓ align: Specifies the alignment of data within the display space. You can
use these alignments:

 •	<: Left aligned

 •	>: Right aligned

 •	^: Centered

 •	=: Justified

 ✓ sign: Determines the use of signs for the output:

 •	+: Positive numbers have a plus sign and negative numbers have a
minus sign.

 •	-: Negative numbers have a minus sign.

 •	<space>: Positive numbers are preceded by a space and negative
numbers have a minus sign.

 ✓ #: Specifies that the output should use the alternative display format for
numbers. For example, hexadecimal numbers will have a 0x prefix added
to them.

 ✓ 0: Specifies that the output should be sign aware and padded with zeros
as needed to provide consistent output.

 ✓ width: Determines the full width of the data field (even if the data won’t
fit in the space provided).

 ✓ ,: Specifies that numeric data should have commas as a thousands
separator.

 ✓ .precision: Determines the number of characters after the decimal point.

 ✓ type: Specifies the output type, even if the input type doesn’t match.
The types are split into three groups:

 •	String: Use an s or nothing at all to specify a string.

 •	Integer: The integer types are as follows: b (binary); c (character);
d (decimal); o (octal); x (hexadecimal with lowercase letters);
X (hexadecimal with uppercase letters); and n (locale-sensitive
decimal that uses the appropriate characters for the thousands
separator).

221 Chapter 11: Working with Strings

 •	Floating point: The floating-point types are as follows: e (exponent
using a lowercase e as a separator); E (exponent using an upper-
case E as a separator); f (lowercase fixed point); F (uppercase fixed
point); g (lowercase general format); G (uppercase general format);
n (local-sensitive general format that uses the appropriate charac-
ters for the decimal and thousands separators); and % (percentage).

The formatting specification elements must appear in the correct order or
Python won’t know what to do with them. If you specify the alignment before
the fill character, Python displays an error message rather than performing
the required formatting. The following steps help you see how the formatting
specification works and demonstrate the order you need to follow in using
the various formatting specification criteria. This example also appears with
the downloadable source code as Formatted.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Formatted = "{:d}"
print(Formatted.format(7000))

Formatted = "{:,d}"
print(Formatted.format(7000))

Formatted = "{:^15,d}"
print(Formatted.format(7000))

Formatted = "{:*^15,d}"
print(Formatted.format(7000))

Formatted = "{:*^15.2f}"
print(Formatted.format(7000))

Formatted = "{:*>15X}"
print(Formatted.format(7000))

Formatted = "{:*<#15x}"
print(Formatted.format(7000))

Formatted = "A {0} {1} and a {0} {2}."
print(Formatted.format("blue", "car", "truck"))

222 Part III: Performing Common Tasks

 The example starts simply with a field formatted as a decimal value.
It then adds a thousands separator to the output. The next step is to
make the field wider than needed to hold the data and to center the data
within the field. Finally, the field has an asterisk added to pad the output.

 Of course, there are other data types in the example. The next step is
to display the same data in fixed-point format. The example also shows
the output in both uppercase and lowercase hexadecimal format. The
uppercase output is right aligned and the lowercase output is left aligned.

 Finally, the example shows how you can use numbered fields to your
advantage. In this case, it creates an interesting string output that
repeats one of the input values.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs data in
various forms, as shown in Figure 11-6.

Figure 11-6:

Use

formatting to

present data

in precisely

the form you

want.

